New Challenges and Trends in Electricity Markets

ETN -- 9th International Gas Turbine Conference

Tommaso Nappi

Brussels, October 10th, 2018

Index

- Enel Fleet for CCGTs
- Market challenges faced by Enel Thermal Generation
- Focus: New Italian Strategic Plan for Energy
- Enel Approach to capture market opportunities
- Battery Energy Storage Systems
- Opportunities from Digital Tools
- Conclusions

Enel Fleet for CCGTs

Enel CCGT Fleet

Key elements

Enel Fleet Machines & Technologies

enel

Country	Total CCGT Installed Capacity	Siemens/AEN	GE	MHPS
Italy	4480 MW	12 x V94.3A2		
Iberia	5460 MW	2 x V94.3A6	14 x 6FA/FA +e 2 x GT26B 4 x 9FB 3 x GT8C	1 x 701F
Russia	800 MW	1 x SGT5-4000F	1 x MS9001FB	
Chile	1512 MW		4 x PG9171E	2 x 701F
Argentina	1920 MW	1 x V94.3	2 x GT26A/B	2 x 701F
Peru	470 MW	2 x SGT6-4000F		
Brazil	300 MW		2 x GT11N2	

enel

Market Challenges faced by Enel Thermal Generation

Enel Thermal Generation challenges worldwide

Enel Thermal Generation as a global player in Energy Production manages plants in two main geographic areas:

- Europe
- South America

Within Europe significant capacity is located in Russia, which has quite different rules and challenges from Western Europe

By means of:

- Matrix organization
- Strong cooperation between functions
- Open mindedness

Enel is able to manage local specificities, but keeping focus on global goals, strategies and pillars for growth.

O&M Drivers: path to Operational Excellence

Western Europe

Italy, Spain and Portugal

Market Challenges:

- High penetration of RES
- Targets for <u>Emission reduction</u> and <u>decarbonization</u>
- Strongly competitive market with low prices
- Strong focus on Emission Limits by authorities
- Different regulations on <u>Grid Service Markets</u> (balancing & ancillary services, PFR, SFR, etc.)
 - $\checkmark\,$ Becoming more and more important for EBITDA and competitiveness
- Discussion on capacity market ongoing
- Local peculiarities (islands)

Country Russia

enel

Market Challenges:

- Overall capacity close to the actual demand
- Extreme environmental conditions
- High load factors during winter
- Focus on Availability, Reliability, Efficiency, Increase of Power Output
- Very high average age of the fleet: modernization projects launched by Ministry of Energy
- Compliance with Russian Technical Requirements which are mandatory for Energy Wholesale Market Participants.

South America

Argentina, Brazil, Chile, Perú

Market Challenges:

- <u>Different level of development of Electricity markets across the countries</u>
- In some case Grid Service Markets are developing and now growing, having as model western countries
- Different levels of regulation in Markets
- Overall capacity often close to the actual demand
- In several cases high average age of generating units
- For most of units, focus is on availability, reliability, efficiency

Focus: New Italian Strategic Plan for Energy

New Italian Strategic Plan for Energy (SEN)

Key Pillars

07/10/2018

T. Nappi - New Challenges and Trends in Electricity Markets

Main Targets

enel

CCGTs as possible **key technology** to handle transition

- New Capacity
- Capacity Market
- Increased flexibility
- New Grid Market Opportunities
- Higher service factors

Enel approach to capture market opportunities

Key elements

enel

 Operating Flexibility increase
 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load
 Reduction of Planned Unavailability
Reduction of Unplanned Unavailability
 Increase or Recover Maximum Load
 Improvement of Start-up time
Cold Start-upHot Start-up

Index

enel

	Operating Flexibility Increase	
	 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load 	
(Reduction of Planned Unavailability)
	Reduction of Unplanned Unavailability)
	Increase or Recover Maximum Load)
	Improvement of Start-up time)
	Cold Start-up Hot Start-up	

Enhancement of flexible operation

enel

Ramp rates

Target

- Improve participation to PFR
- Enhance participation to SFR
- Increase opportunities in Grid Services

Expected Benefits

- Allow fast transient states without impacting on flame stability
- Keep emissions within the limits also during transient states

Required Activities

Depend on OEM but typically implies:

- Burner Upgrades
- Fuel Systems Upgrades
- Fuel Control system Upgrades
- Recommissioning & Tuning

07/10/2018

Minimum Environmental Load (MEL) reduction

Combustion improvements

Target

- Enhance market positioning of the unit
- Increase chances of being called to production by bidding a wider operating range

Expected Benefits

- MEL Reduction
- Flexible operation

Required Activities

Depend on OEM but typically implies:

- Burner Upgrades
- New combustion logics
- Active combustion systems
- Excess air control

Index

enel

	Operating Flexibility increase	
	 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load 	,
	Planned Unavailability Reduction	
	Reduction of Unplanned Unavailability	
(Increase or Recover Maximum Load	
	Improvement of Start-up time	
	Cold Start-up Hot Start-up	

Reduction of Planned unavailability

Enhancement of maintenance cycles

Target

- Reduce planned maintenance
 unavailability
- Reduce Total Cost of Ownership

Expected Benefits

- Longer service Intervals
- Lower wear & tear of parts
- Avoidance of costs related to Major Overhaul, included in the packages

Required Activities

Depend on OEM but typically implies:

- New Hot Gas Parts
- Several improvements in cooling and combustion system
- Normally it requires outages with rotor extraction

Index

Operating Flexibility increase		
 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load 		
Reduction of Planned Unavailability		
Reduction of Unplanned Unavailability		
Increase or Recover Maximum Load		
Improvement of Start-up time		
Cold Start-up Hot Start-up		

Reduction of unplanned unavailability

Active combustion monitoring systems

Target

- Reduce unplanned maintenance unavailability
- Improve overall machine performances
 without "touching" the iron

Expected Benefits

- Reduction of trips for severe humming events
- Increase of generale machine performances
 (if combined with other improvements)
- Where necessary, reduction of Short/Minor inspections after such events

Required Activities

Depend on each OEM, but normally requires:

- Active monitoring of combustion
- Potential need for additional sensors
- Commissioning & Tuning

Index

enel

Operating Flexibility increase	
 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load 	
Reduction of Planned Unavailability	
Reduction of Unplanned Unavailability	
Increase or Recovery of Maximum Load	
Improvement of Start-up time	
Cold Start-up Hot Start-up	

Maximum Load increase

Mass flow and TIT improvements

Target

- Where availlable, increase of revenues from capacity market
- In baseload scenarios, increase of gross
 output

Expected Benefits

- Increase of maximum load
- Longer service intervals
- Increase of efficiency
- Benefits on bottoming cycle
- The improvements can allow to save overhaul costs

Required Activities

Depend on OEM but can imply:

- Compressor upgrade for improved mass flow
- Turbine B&V substitution with higher ratings for higher TIT

ene

Indice

enel

	Operating Flexibility increase	
	 Improved ramp rates Increased participation to SFR Lowering of Minimum Environmental Load 	
(Reduction of Planned Unavailability	
(Reduction of Unplanned Unavailability	
	Increase or Recover Maximum Load	
	Improvement of Start-up time	
	Cold Start-upHot Start-up	

Reduction of start up time

Group of actions for BOP

07/10/2018

Cold Start-up Activity **Benefits** Purge Credit ٠ Avoidance of Purge before start-up • **Fuel Gas Electric Heater** Avoidance of aux boiler pressurization time • • GT/ST Dynamics decoupling **Final Desuperheater** ٠ ٠ Hot Startup Activity **Benefits Oversized Steam Drains** Faster Piping heating ٠ ٠ **Rotor Stress Evaluator** Benefits on all kind of start ups ٠ ٠

T. Nappi - New Challenges and Trends in Electricity Markets

Che

Battery Energy Storage Systems

Battery ESS

- Over the last decade, the energy storage system (ESS) has become one of the more attractive element to boost power system performance and grid reliability
- The Battery ESS can be used to mitigate the voltage unbalance of the electrical networks, for frequency control, to complement spinning reserves, peak demand shaving, reducing operating costs.
- A widespread application of BESS is driven by CAPEX decrease and system performance improvements: now BESS does represent a remunerative investment for many applications
- To take opportunity to develop BESS applications along the three main business models: on-plant on network, stand alone and in isolated system

Opportunities from Digital Tools

Strategic Vision and Rationales

Foreword

THERMAL GEN MARKET CONTEXT	 Current scenario puts Thermal Generation under high pressure Future chances may arise Thus keeping plants up & running is necessary, but with lesser and lesser resources
	 Thermal Generation is sometime managed as a traditional business, not getting complete benefit from new technologies Suitable innovation programs for the business
DEVELOPMENT	 Digital is and will be a major business disruptor within the energy sector
	 Worldwide fleet with different cultures is at the same time a richness and an additional difficulty for deployment
OPPORTUNITIES	 Key objective should be to evolve operating and cultural model while
AND RISK FROM	 Key issues / elements need to be addressed:
THE DIGITAL PLAN	 Roles and responsibilities Approach Timing
07/10/2018 T. Naj	ppi - New Challenges and Trends in Electricity Markets

Integrated end-to-end digitalized processes

DIGITALLY INTEGRATED "SMART PLANT"

Example of Applications in O&M

	Advanced Predictive Diagnostics	Advanced Process Control
Initiatives description	 System of Remote Predictive Diagnostic to switch from an accident/engineering-based to a data- driven/business approach The system is based on basic and machine-learning algorithms for progressive performance improvement based on historical series analysis of plant operational data (i.e. heat rate, downtime, vibration) 	 Installation of different APC to optimize the performances under interest: Steam temperature max value and heat rate Primary Frequency Response Humming (combustion noise) Ammonia quantity for Nitrogen reduction
Expected benefits	 Reduce maintenance costs, performing maintenance operations just in time, when necessary, avoiding fixed scheduled maintenance Reduce plant outage time, preventing unexpected equipment failures through remote predictive diagnostics 	 Optimization of Net Heat Rate Reliability improvement and reduction of plant unavailability, due to maintenance operations. Reduction of minimum load
	Under-maintained Risk-based Divers maintained Tatal cost Preventise maintenance aut Comfort mode Goal Cost of root-seatability	Constraint 2

Conclusions

Conclusions

- Electricity markets are facing big changes around the world
- Traditional Thermal generation is under pressure, but CCGTs are recognized to be a bridge technology that should last for many years
- To keep the fleet competitive, it is very important to know the market opportunities and translate them into technological improvements
- A good relationship with OEMs can help identify the most promising/adequate technologies
- A modern utility, however, must be able, by means of internal know-how, to optimize all the aspect of O&M, starting from conceptual design of a plant up to the decommissioning
- Leveraging on new Digital Technologies, quality and quantity of information will improve, while optimizing the OpEX

Thank you

07/10/2018

36